(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
Introduction
1 Magnetoresistance effects and magnetoelastic behavior of ferromagnetic materials
1.1 Magnetoresistive elements for magnetic field sensing
1.1.1 Hall sensors
1.1.2 Anisotropic Magnetoresistance (AMR) based sensors
1.1.3 Giant, Colossal and Tunnel Magnetoresistance (GMR, CMR and TMR) based sensors
1.1.4 Comparison with other magnetoresistive elements
1.2 Basic notions of material behavior
1.2.1 Different types of magnetic behavior
1.2.2 Ferromagnetism
1.2.3 Mechanical behavior
1.2.4 Magnetoelastic coupling
1.3 AMR models in the literature
2 Single crystal behavior
2.1 Microscopic magneto-elastic model
2.1.1 Exchange energy
2.1.2 Magnetocrystalline anisotropy energy
2.1.3 Magnetostatic energy
2.1.4 Elastic energy
2.2 Calculation at the magnetic domain scale
2.2.1 Potential energy of a magnetic domain
2.2.2 Single domain model of AMR
2.3 Calculation at the single crystal scale
2.3.1 Selection and calculation of state variables
2.3.2 Homogenization
2.4 Results and comparison to experimental data
2.4.1 Magnetoelastic properties
2.4.2 Magnetoresistive properties
2.5 Conclusion
3 Polycrystal behavior
3.1 Macroscopic model
3.1.1 Modeling strategy
3.1.2 Localization step
3.1.3 Calculation of the effective properties
3.1.4 Calculation algorithm and model parameters
3.2 Prediction of the AMR effect on ferromagnetic polycrystals
3.2.1 Effect of stress on the magnetoresistive behavior
3.2.2 Effect of crystallographic texture
3.3 Conclusion
4 Modeling of thin film AMR sensor properties
4.1 Design and contruction of AMR sensors
4.2 Modeling thin film properties
4.2.1 Introduction of surface effect
4.2.2 Textured AMR thin film sensor properties
4.3 Effect of biasing magnetic field
4.3.1 Definition of the sensitivity of an AMR sensor element
4.4 Influence of the film thickness
4.5 Effect of stress on the properties of AMR thin film sensors
4.6 Conclusion
General conclusion
Bibliography




