(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
PART I – STATE OF THE ART AND RESEARCH QUESTION
Chapter 1. Concepts related to risk management and flood damage estimations
1. Introduction
2. Flood risk
2.1. Floods – natural hazards?
2.2. Human systems vulnerability – exposure and susceptibility to suffer damage
2.3. Flood effects, consequences and damage
2.4. Flood risk – conjunction of loss and probability
2.5. Human systems resilience to floods
3. Flood risk management
3.1. Types of flood management measures
3.2. Stakeholders, risk knowledge and decision-making process
4. The assessment of potential flood damage
4.1. Actual and potential damage assessments
4.2. Conceptual methods to estimate damage potential
4.3. Deterministic methods to estimate damage potential
5. The deterministic evaluation of potential flood damage
5.1. Economic evaluation principles
5.2. Flood damage evaluation process
5.3. Results of flood damage evaluations
6. Chapter summary
Chapter 2. Uncertainty on the ‘foundation’ of potential flood damage estimations
1. Introduction
2. Modelling processes and uncertainties behind the evaluation
2.1. The “pillars” of flood damage assessments
2.2. The “foundation” of the evaluation, source of uncertainties
2.3. Role of uncertainty on the evaluation results
2.4. Scales of evaluation and the liability of the evaluation
3. Identification of the research question
3.1. Pre-study for flood damage evaluations
3.2. The liability of the evaluation – a feasibility issue?
4. Thesis question and research framework
4.1. Strategies of evaluation
4.2. Propagation of uncertainty through the evaluation
4.3. Measure results variability
4.4. Application of the framework
5. Chapter summary
Chapter 3. Development of a GIS-based method to evaluate potential flood damage
1. Introduction
2. The role of GIS in flood risk assessments
2.1. Representation of data in a GIS
2.2. GIS in hazard modelling/mapping
2.3. GIS in vulnerability assessment/mapping
2.4. GIS in damage potential evaluation/mapping
3. General GIS-based method principles
3.1. Step 1: assessing the assets flooding potential
3.2. Step 2: calculation of assets damage potential
3.3. Step 3: calculation of expected annual damage
3.4. Implementation of the method in a GIS platform
4. Using the GIS-based method to estimate potential flood damage
4.2. Pre-processing functions
4.3. Model RUN parameters
4.4. Results
5. Conclusions and perspectives
PART II – VARIABILITY OF POTENTIAL FLOOD DAMAGE ESTIMATIONS
Chapter 4. Case studies: the towns of Holtzheim and Fislis
1. Localization of case-studies
2. Holtzheim in the Bruche lower valley
3. Fislis in the Ill upper valley
4. Conclusions
Chapter 5. Hydrological analyses of flood discharges and frequencies
1. Introduction
1.1. Flood frequency analyses and flood risk evaluation
1.2. Objective of this chapter
2. Uncertainty analysis method
2.1. Flood frequency analysis
2.2. Flood risk assessment
2.3. Case study and datasets
3. Results
3.1. Impact of hydrological CI on hazard maps
3.2. Impact of hydrological CI on assets exposition and damage
3.3. Impact of hydrological CI on flood EAD and risk maps
3.4. Results general discussion
4. Conclusions
Chapter 6. Hydraulic modelling and flood mapping
1. Introduction
1.1. Flood maps
1.2. Hydraulic modelling and hazard mapping
1.3. Uncertainty sources
2. Hydraulic uncertainty, flood maps and damage estimates
2.1. Case study and datasets used for the simulations
2.2. Differences between modelling scenarios
2.3. Flood modelling and hazard mapping
2.4. Damage estimation
3. Results
3.1. Impact of hydraulic modelling choices on hazard maps
3.2. Impact of hydraulic modelling on damage estimates
3.3. Result discussions
4. Conclusions
Chapter 7. Asset exposure and vulnerability assessments
1. Introduction
1.1. Damage-influencing factors
1.2. Assessment of the vulnerability assets
1.3. Uncertainties linked to vulnerability assessments
2. Variability direct damage estimations to buildings
2.1. Basis for damage estimations
2.2. Available datasets for vulnerability analyses
2.3. Interviews and field surveys
2.4. Different methods used to estimate the vulnerability of buildings to floods
2.5. Damage estimations
3. Results
4. Results discussion and recommendations
4.1. Prioritization of areas for investments
4.2. Selection of flood risk alleviation measures
4.3. Estimation of global costs of damage for budget organization
5. Chapter conclusions
Chapter 8. Asset value estimations and susceptibility models
1. Introduction
1.1. Susceptibility analyses
1.2. Damage models
1.3. Using existing damage functions
1.4. Uncertainties
1.5. Validation of damage functions
2. Influence of methods on damage potential estimates
2.1. Selection of damage functions
2.2. Calibration of damage functions
2.3. Actual damage analysis
3. Cumulating uncertainty sources for uncertainty analyses
4. Chapter conclusions
Chapter 9. Cascade of uncertainties in flood damage estimations
1. Introduction
2. Method
2.1. Definition of evaluation strategies
2.2. Implementation of the different assessment strategies
2.3. Propagation of uncertainties
3. Results
3.1. Global uncertainty of assessments
3.2. The role of the analysis scale
3.3. Discussion on the results
4. Conclusions and outlook
PART III – THE COMPLEXITY OF FLOOD INDIRECT DAMAGE AND RESILIENCY
Chapter 10. Estimation of potential damage and dysfunction to network infrastructures
1. Introduction
1.2. Flood consequences evaluation
1.3. Resilience and network infrastructures
1.4. Objectives of this chapter
2. Method principles
2.1. STEP 1: Data collection and interviews organisation
2.2. STEP 2: Damage-dysfunction processes
2.3. STEP 3: Quantification of damage and dysfunctions
2.4. Case study
3. Results
3.1. Damage-dysfunction matrices
3.2. Evaluation of damage and dysfunctions
4. Discussion of results
5. Conclusions and perspectives
LIST OF REFERENCES


