(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
RESUME DE LA THESE
1. Contexte générale de la thèse
2. Objectifs
3. Le stockage d’Hydrogène dans les cavités salines
3.1 Problématique
3.2 Matériau et méthodes expérimentales
3.3 Résultats et discussions
4. Le Stockage d’Hydrogène dans les roches poreuses
4.1 Problématique
4.2 Description du dispositif expérimental
4.3 Résultats préliminaires
4.4 Conclusion
1.GENERAL CONTEXT
1.1.Environmental and economic problems of energy today
1.2.Assessment of underground energy storage
1.2.1.Pumped Hydro Energy Storage
1.2.2.Compressed air storage (CAES)
1.2.3.Geothermal energy storage
1.2.4.Hydrogen gas storage
1.3.The aspects of underground hydrogen storage
1.3.1.Hydrogen storage in salt caverns
1.3.2.Aquifers
1.3.3.Depleted oil and gas reservoirs
1.4.Hydrogen gas fundamentals
1.4.1.Hydrogen gas chemical aspect
1.4.2.Thermophysical properties
1.4.3.Energy Content
1.4.4.Hydrogen reactivity and solubility
1.5.Worldwide hydrogen storage examples in geological structures
1.6.Objectives of the thesis
2.STATE-OF-ART
2.1.Rock salt a polycrystalline material
2.1.1.Salt rock structure and mineralogy
2.1.2.Structure and mechanical properties of halite mineral
2.1.2.1.The halite NaCl crystal
2.1.2.2.Inclusions
2.1.2.3.Chevrons and beds
2.1.2.4.Granularity
2.1.2.5.Crystal joints
2.2.Rock salt mechanical properties and behavior
2.2.1.Salt crystal deformation types
2.2.1.2.Intercrystalline deformations by dissolution-recrystallization
2.2.1.3.Brittle or cataclastic deformations
2.2.2.Salt mechanical properties evolution under instantaneous loading
2.2.2.1.General description
2.2.2.2.Elastic properties of rock salt
2.2.2.3.Damage evolution under deviatoric stress: dilatancy boundary
2.2.2.4.Plastic evolution under compressive deviatoric stress: the hardening effect
2.2.3.Salt mechanical properties under long-term loading
2.2.3.1.General description
2.2.3.2.Micromechanisms of salt creep
2.2.3.3.Salt creep characteristics
2.2.3.4.Salt relaxation processes
2.3.Salt poromechanical properties
2.3.1.General theory of poroelasticity
2.3.2.Effective mean stress influence on salt rock mechanical behavior
2.3.3.Anisotropy/isotropy of rock salt
2.4. Salt as a tight porous media
2.4.1. Definition of a porous media
2.4.2. Fluid flow dynamics and laws in porous media
2.4.2.1. Advection or permeation concept
2.4.2.2. Difference between diffusion and dispersion
2.4.2.3. Pore-walls and gas interactions: impact on gas transport and Klinkenberg effect
2.4.2.4. Fracture permeability
2.4.3. Fluid flow in rock salt reservoir: Gas permeability measurement methods
2.4.4. Mechanical influence on petrophysical properties of salt
2.4.4.1. Hydrostatic effect on permeability: the healing process
2.4.4.2. Deviatoric stress effect on permeability
2.4.4.3. Experimenting the sealing capacity of rock salt
2.5. Thermo-mechanical loading effect
2.5.1. Security and geomechanical stability of salt cavern
2.5.2. Mechanical cycling effect
2.5.3. Thermal cycling effect
2.6. Conclusions
3. EVOLUTION OF GAS PERMEABILITY OF ROCK SALT UNDER DIFFERENT LOADING CONDITIONS AND IMPLICATIONS ON THE UNDERGROUND HYDROGEN STORAGE IN SALT CAVERNS
3.1. Abstract
3.2. Introduction
3.3. Material and methods
3.3.1. Material description and sampling
3.3.2. Microstructural characterization of initial material
3.3.2.1. Porosity measurements
3.3.2.2. X-ray 3D Computed Tomography (CT)
3.3.3. Theoretical considerations
3.3.3.1.Biot’s coefficient
3.3.3.2. Measurement of ultrasonic P and S-wave velocities during compression test
3.3.3.3. Apparent and intrinsic permeability
3.3.4. Experimental procedures for hydromechanical tests and permeability measurements
3.4. Microstructural characteristics of rock salt
3.5. Mechanical behaviour of rock salt
3.5.1. Behaviour under hydrostatic loading and poromechanical coupling
3.5.2. Behaviour under deviatoric loading
3.6. Permeability evolution during mechanical and thermal loadings
3.6.1. Intrinsic permeability and Klinkenberg effect
3.6.2. Evolution of apparent gas permeability with stress increase
3.6.3. Impact of mechanical and thermal fatigue on rock salt permeability
3.6.3.1. Static (creep test) and dynamic (cyclic) mechanical fatigue
3.6.3.2. Cyclic thermal fatigue
3.7. Conclusions
3.8. Acknowledgements
3.9. References
4. CONCLUSIONS AND PERSPECTIVE ON STORAGE IN SALT CAVERNS
5. LITERATURE REVIEW
5.1. Challenges for hydrogen storage in porous rock
5.2. Flow and mass transport in porous rock:
5.2.1. Multiphase transport of hydrogen within the porous rock: relative permeability
5.2.2. Effects of saturation, wettability and mobility of fluids in porous rock
5.2.3. Mixing phenomena in gas-gas interaction
5.2.4. Miscibility of fluids: effect of hydrogen solubility in water
5.3. Hydrogen geochemical interactions in porous rock
5.3.1. Abiotic reactions of hydrogen
5.3.2. Physical properties of sandstone: a typical rock reservoir
5.4. Impact of bacterial activity on the storage in porous rock
5.4.1. Hydrogen biogeochemical Interactions and conversion
5.4.2. Hydrogenotrophic bacteria
5.4.3. Microbial Process
5.4.3.1. The conditioning of the surface by the environment and bacteria adhesion
5.4.3.2. Bacteria growth
5.4.3.3. Growth stable phase and biofilm dispersion
5.4.3.4. The decay phase
5.4.4. H2 consumption rate by biofilm degradation
5.4.5. The Shewanella bacteria
5.4.6. Flow-through test in literature
6. FLOW-THROUGH EXPERIMENTS IN POROUS ROCK ON ANALOG SANDSTONE
6.1. Introduction
6.2. Analog samples characterization: Vosges sandstone
6.3. Bacterial culture medium preparation
6.3.1. Batch experiments
6.3.1.1. Preparation of the bacterial culture solution
6.3.1.2. Preparation of the bacterial suspension
6.3.1.3. Physicochemical analysis
6.3.2. Flow-through experiment mimicking the underground storage in aquifers
6.3.2.1.Experimental apparatus
6.3.2.2. Calibration of the micro-GC and the valve HP-LP
6.3.2.3. Experimental procedure
6.3.3. Results and discussion
6.3.4. Results in batch
6.3.4.1. Salinity impact on S. putrefaciens growth
6.3.4.2. Hydrogen consumption evolution by the measurement of Fe2+ production
6.3.4.3. S. putrefaciens bacterial cells count
6.3.4.4. Some observations on hydrogen bacterial consumption in batch
6.3.5. Results of the feasibility tests of the experimental setup
6.3.5.1. Experimental tests with hydrogen concentration of 70% and hydrogen reinjection for maintaining pressure equilibrium in the closed circuit
6.3.5.2. Experimental test with hydrogen concentration of 5% and Argon reinjection for maintaining pressure equilibrium in the closed circuit
7. CONCLUSION
8. GENERAL CONCLUSIONS AND PERSPECTIVES
8.1. Hydrogen storage in salt cavern
8.2. Hydrogen storage in porous reservoir rocks
9. REFERENCES




