Laser Doppler Anemometry (LDA)

somdn_product_page

(Downloads - 0)

Catégorie :

For more info about our services contact : help@bestpfe.com

Table of contents

1 Introduction
1.1 Steelmaking Processes and Mass Transfer
1.2 Continuous Casting
1.3 Mass Transfer in Steelmaking
1.4 Objectives
2 Mass Transfer and Fluid Flow near the Interface Region
2.1 Turbulence interactions in Multiphase Flows
2.2 Mass Transfer in Multiphase Flows
2.2.1 Mass Transfer across Liquid-Gas Interface – A brief overview
2.2.2 The film theory
2.2.3 The penetration model
2.2.4 The surface renewal time model
2.2.5 The surface Divergence Model
2.3 Conclusion
3 Experimental Methods
3.1 Continuous Casting (CC) Water Model
3.1.1 Similitude: Non-Dimensional Parameters
3.1.2 Physical Model and Fluid Properties
3.2 Velocity Measurements
3.2.1 Laser Doppler Anemometry (LDA)
3.3 Image processing
3.3.1 Python Image Processing
3.3.2 Experimental Interface Tracking (EIT)
3.4 Conclusions
4 Models and Numerical Methods
4.1 The single fluid model
4.1.1 Mass Conservation
4.1.2 Momentum Conservation
4.1.3 Navier-Stokes Equation for Single Fluid Model
4.2 Turbulence modeling
4.2.1 General featuring’s
4.2.2 LES modeling for single fluid flows
4.2.3 Spatial filtering of Navier-Stokes single-fluid model
4.2.4 Filtered Navier-Stokes equations for two-phase flows
4.3 Fictitious Domain Method (FDM) for Obstacles and solid boundaries
4.4 Approximation of the turbulent single-fluid model
4.4.1 Temporal discretization
4.4.2 The incompressibility constraint – The velocity-pressure coupling
4.5 Spatial Integration
4.6 Interface Tracking Methods
4.6.1 Interface tracking with reconstruction – VOF-PLIC
4.6.2 Capillarity effects Smooth Volume of Fluid – SVOF
4.7 Conclusion
5 Continuous Casting – Hydrodynamic Characterization
5.1 Experimental Analysis
5.1.1 Effect of water flow rate
5.1.2 Effect of oil layer viscosity
5.1.3 Effect of oil layer thickness
5.1.4 Conclusions
5.2 Proposed configuration for mathematical modeling
5.3 Interface Characteristics
5.4 Mean Flow Description
5.4.1 Water Oil Interface (WOI) configuration
5.4.2 Water Air (WFS) Configuration
5.5 Turbulence Characterization
5.6 Turbulence implications on Mass Transfer Coefficients
5.7 Mass Transfer distribution at the liquid/liquid interface
5.8 Influence of process parameters on mass transfer coefficients
5.8.1 Casting Speed
5.8.2 Slag viscosity
5.9 Conclusions
6 Liquid/Liquid Mass Transfer Experiments
6.1 Liquid/Liquid Experiments
6.1.1 Mass Transfer in a Ladle Model
6.1.2 Simplified liquid/liquid mass transfer experiments
6.1.3 Simplified liquid/liquid mass transfer modeling
6.1 Conclusion
7 Mass Transfer on an Industrial Configuration
7.1 Continuous Casting – Industrial Configuration
7.1.1 The mold
7.1.2 The Submerged Entry Nozzle (SEN)
7.1.3 The operational conditions
7.2 CFD Model Results
7.2.1 Hydrodynamic aspects
7.2.1 Mass Transfer Coefficient
7.3 Conclusion
8 Conclusions
9 References

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *