(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
List of Figures
List of Tables
Abbreviations
Acknowledgements
Chapter 1: Introduction
1.1 The model systems: Danionella translucida and Danio rerio
1.2 Behavioral neuroscience and the comparative method
1.3 Evolution of locomotor circuits
1.4 Locomotor signatures of larval zebrafish
1.5 Supraspinal neuronal correlates of locomotion
1.6 Summary and objectives of the current study
Chapter 2: Materials and Methods
2.1 Animal maintenance
2.1.1 Danio rerio (zebrafish)
2.1.2 Danionella translucida
2.2 Behavior
2.2.1 Free-swimming behavioral acquisition, fish tracking and tail segmentation
2.2.2 Analysis pipeline for free-swim data
2.2.3 Clustering of free-swim half tail beats
2.2.4 Head-embedded swimming behavior set-up
2.2.5 Analysis pipeline for head-embedded data
2.2.6 Assay to study tap-induced escape behavior
2.2.7 Analysis pipeline for tap-induced escape data
2.2.8 Mean squared displacement (MSD) and reorientation analysis
2.2.9 Energetics and swimming speed
2.2.10 Quantification of depth preference
2.2.11 Quantification of body length and swim bladder inflation
2.3 Anatomy
2.3.1 Fluorescence In-situ hybridization and Immuno-histochemistry
2.3.2 Confocal imaging of the whole brain FISH/IHC samples
2.3.3 Retrograde labelling of reticulospinal (RS) neurons
2.4 Physiology
2.4.1 Generation of pan-neuronal calcium sensor Tg(HuC-H2B:GCaMP6s) line
2.4.2 Light-sheet imaging
2.4.3 Image processing and analysis pipeline for whole-brain light-sheet data
2.5 Statistical methods
Chapter 3: Characterization of exploratory locomotion in Danionella translucida (DT) and Danio rerio (ZF)
3.1 Length of larval DT and ZF is in a similar range
3.2 DT execute swim events with a continuous tail-burst activity
3.3 Duration of swim events are much longer in DT
3.4 DT swim slower with a lower half beat frequency and tail angle
3.5 DT has lower mean escape velocity than ZF but tends to show a lower latency to achieve peak escape velocity
3.6 Exploratory swimming in DT has a longer ballistic phase
3.7 The continuous swimming in DT can be divided into at least two types, slow and fast swims
3.8 DT’s instantaneous energy requirement during activity appears lower than ZF
3.9 A lower oxygen availability and delayed swim bladder inflation might have contributed to the differences in swimming style at the micro scale
Chapter 4: Anatomy and physiology underlying locomotion in Danionella translucida and Danio rerio
4.1 Anatomy
4.1.1. Distribution of glutamatergic, glycinergic and GABAergic neurons in the hindbrain of DT
4.1.2. Reticulospinal (RS) neurons in DT and ZF
4.2 Physiology
4.2.1 Generation of pan-neuronal Tg(HuC:H2B-GCaMP6s) DT fish and whole-brain
imaging 4.2.2 Similar brain nuclei are correlated with swimming in DT and ZF
4.2.3 Neurons in the identified nuclei of DT constitute a functionally heterogenous population
4.2.4 Onset neurons form a continuum between onset and swim maintenance components
Chapter 5: Discussion
5.1 General experimental approach
5.2 Kinematics of spontaneous swimming and escapes
5.3 Exploration and organismal biology
5.4 Anatomy
5.5 Physiology
5.6 Conclusions and future directions
Chapter 6: Appendix
Bibliography



