(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Geological context and formation of Ni laterite deposits in New Caledonia
1.1 Overview
1.2 Geological formation
1.2.1 Geodynamic evolution of the SW Pacific
1.2.2 Peridotite nappe
1.3 Nickel laterite formation
1.3.1 Typical laterite profile in New Caledonia
1.3.2 Direct laterite formation
1.3.3 Multi-stage formation
1.4 Deposit model
1.4.1 Per-descensum formation
1.4.2 Relations of the Deposits to Structures
1.5 Description and objectives of the thesis
2 Reactive geochemical transport model of the formation of nickel laterite profile
2.1 Introduction
2.2 Article 1. Revealing the conditions of Ni mineralization in laterite profile of New Caledonia: insights from reactive geochemical transport modelling
2.3 Conditions for precipitation of talc-like and sepiolite-like minerals
3 Reactive Transport Modelling applied to Ni ore deposits in New Caledonia: Role of hydrodynamic factors and geological structures on Ni mineralization.
3.1 Introduction
3.2 Materials and methods
3.2.1 Conceptual model of Saprolitic nickel-ore formation in New Caledonia
3.2.2 Physical assumptions and equations governing hydrodynamic system
3.2.3 Geochemical system
3.3 Numerical model and Validation
3.4 Results and discussion
3.4.1 2D reactive transport model of saprolitic deposits formation
3.4.2 Impact of fractures on redistribution of ore deposits
3.4.3 Weathering of peridotite corestone within the set of fractures. Target-like ore
3.5 Conclusions
4 Conceptual model of multistage fracture filling due to the fluid overpressure. Evidences of low-to-medium-temperature hydrothermal fluid circulation during the formation of the Ni silicate veins
4.1 Article 3. Multistage crack seal vein and hydrothermal Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia)
Bibliography



