(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
1 Introduction
2 Concepts and methods
2.1 Radiative transfer theory
2.1.1 Radiative transfer equation
2.1.2 Diffusion approximation
2.2 Equipartition of the energy
2.3 Coda wave interferometry
2.3.1 MCSW method
2.4 Seismic interferometry
2.4.1 Passive image interferometry
2.5 Sensitivity kernels
2.5.1 Observation and motivation
2.5.2 Basic theory of traveltime sensitivity kernels
3 Separation of phenomena from v=v measurements
3.1 Abstract
3.2 Introduction
3.3 Data processing description
3.4 Procedure and results
3.4.1 Measured and modeled velocity variations
3.4.2 Analysis of geodetic data
3.5 Loading effect of the rainfall
3.6 Conclusions
3.7 Supplementary information
4 Coupling between surface and body waves
4.1 Abstract
4.2 Introduction
4.3 Scalar wave equation model with surface and body waves
4.3.1 Equation of motion
4.3.2 Eigenfunctions and Green’s function
4.3.3 Source radiation and density of states
4.4 Single scattering by a point scatterer
4.4.1 Scattering of a surface wave
4.4.2 Scattering of body waves
4.5 Equation of radiative transfer
4.5.1 Phenomenological derivation
4.5.2 Energy conservation and equipartition
4.5.3 Diffusion Approximation
4.6 Monte-Carlo Simulations
4.6.1 Overview of the method
4.6.2 Numerical results
4.7 Conclusions
4.8 Supplementary information
4.8.1 Variational formulation for mixed boundary conditions
4.8.2 Far-field expression of the Green’s function for scalar waves in a halfspace with mixed B.C
5 Sensitivity Kernels
5.1 Introduction
5.2 Scalar model
5.3 Penetration depth of the surface wave
5.4 Phase velocity variation for surface waves
5.5 Group velocity
5.6 Time densities
5.7 Sensitivity kernels
5.8 Monte Carlo simulations
5.8.1 General outline
5.9 Surface and body wave sensitivity
5.9.1 Time partition coefficient
5.10 Spatial scaling parameter
5.11 Conclusions
6 Recovery of velocity variations at depth
6.1 Introduction
6.1.1 The inversion problem
6.2 Setting of the seismic inverse problem
6.2.1 Construction of the operator G
6.2.2 Parameters election
6.3 Performance of the inversion in synthetic tests
6.3.1 Noise-free inversion: Effects of the downsampling process
6.3.2 Performance at different depths
6.3.3 Performance with different lapse times
6.3.4 Performance with different levels of noise
6.4 Conclusions
7 Conclusions and perspectives




