(Downloads - 0)
For more info about our services contact : help@bestpfe.com
Table of contents
INTRODUCTION
1 THE SUBMILLIMETER RANGE FOR PLANETARY SCIENCE
1.1 THE HETERODYNE DETECTION
1.1.1 THZ FREQUENCY MIXERS
1.1.2 THZ LOCAL OSCILLATOR
1.1.3 SPACE MISSIONS AND THZ SCIENCE
1.2 THE JUICE PROJECT BASELINE
1.2.1 THE SUBMILLIMETER WAVE INSTRUMENT (SWI)
1.3 DESIGN AND OPTIMIZATION OF PSBD-BASED MMIC MODULES
1.4 STRUCTURE AND OBJECTIVES OF THIS PHD WORK
PART 1: PLANAR SHOTTKY BARRIER DIODES MODELING
2 ANALYTICAL MODEL OF PLANAR SCHOTTKY BARRIER DIODES
2.1 THE TWO-DIMENSIONAL MONTE CARLO SIMULATOR
2.1.1 PSBD STRUCTURE IN MONTE CARLO SIMULATIONS
2.2 THE CURRENT TRANSPORT AND CAPACITANCE MODEL IN PSBDS
2.2.1 BUILT-IN VOLTAGE AND BARRIER HEIGHT RELATIONSHIP
2.2.2 ANALYTICAL MODEL OF CURRENT TRANSPORT IN PSBDS
2.2.3 RESISTANCE MODEL OF PSBDS
2.2.4 CAPACITANCE ANALYTICAL MODEL IN PSBDS
2.3 THE ANALYTICAL MODEL IN HARMONIC BALANCE SIMULATIONS
2.3.1 SINGLE VARACTOR PSBD SIMULATIONS FOR DOUBLERS
2.3.2 ANTIPARALLEL VARISTOR PSBDS SIMULATIONS FOR MIXERS
2.4 CONCLUSIONS
PART 2: THE JUICE-SWI PROJECT
3 A POWER-COMBINED 300 GHZ FREQUENCY DOUBLER
3.1 THE 300 GHZ FREQUENCY DOUBLER CHIP
3.1.1 DESCRIPTION OF THE VIRTUAL DEVICE
3.1.2 DESCRIPTION OF THE MECHANICAL BLOCK
3.1.3 EXPERIMENTAL RESULTS
3.1.4 EXPERIMENTAL COMPARISON BETWEEN PSBD PHYSICAL MODELS
3.2 A POWER-COMBINED 300 GHZ FREQUENCY DOUBLER
3.2.1 QUADRATURE HYBRID COUPLER
3.2.2 DESCRIPTION OF THE MATCHING NETWORK DESIGN
3.2.3 MECHANICAL BLOCK DESIGN: DC CIRCUIT
3.2.4 EXPERIMENTAL RF PERFORMANCE
3.2.5 COMPARISON WITH ADS-HFSS INDIVIDUAL SIMULATIONS
3.3 CONCLUSIONS
4 A 600 GHZ FREQUENCY DOUBLER
4.1 TWO-ANODES 600 GHZ TWO ANODES FREQUENCY DOUBLER
4.1.1 VIRTUAL DEVICE
4.1.2 MECHANICAL BLOCK
4.1.3 EXPERIMENTAL DEVICE
4.1.4 SIMULATIONS OF THE TWO-ANODES 600 GHZ FREQUENCY DOUBLER
4.1.5 EXPERIMENTAL COMPARISON WITH COMBINED SIMULATIONS OF THE 300 GHZ POWER-COMBINED AND 600 GHZ DOUBLERS
4.2 A 600 GHZ FOUR ANODES FREQUENCY DOUBLER
4.2.1 OPTIMIZATION OF THE PSBDS PROPERTIES
4.2.2 VIRTUAL DESIGN IN ADS-HFSS
4.2.3 VIRTUAL ADS-HFSS COMPARISON BETWEEN THE 600 GHZ TWO AND FOUR ANODES DOUBLERS
4.2.4 COMPARISON WITH ADS-HFSS INDIVIDUAL SIMULATIONS
4.2.5 EXPERIMENTAL COMPARISON WITH COMBINED SIMULATIONS OF THE 300 GHZ AND
THE 600 GHZ FOUR ANODES DOUBLER
4.3 CONCLUSIONS
5 A 600 GHZ FREQUENCY RECEIVER
5.1 QUALITATIVE DESCRIPTION OF THE DEVICE
5.1.1 IF ADAPTER CIRCUIT
5.2 ANALYSIS OF THE PSBDS IMPEDANCE MATCHING IN THE 600 GHZ MIXER
5.3 ANALYSIS OF THE PSBDS PERFORMANCES
5.3.1 ANALYSIS OF THE CM
5.3.2 ANALYSIS OF THE
5.3.3 IMPROVEMENT OF THE 600 GHZ SUBHARMONIC MIXER PERFORMANCE
5.4 CONCLUSIONS
6 A 1.2 THZ SUB-HARMONIC BIASABLE FREQUENCY MIXER
6.1 OPTIMIZATION OF THE PSBDS PROPERTIES
6.1.1 ANALYSIS OF THE
6.1.2 ANALYSIS OF THE
6.2 DESCRIPTION OF TWO DIFFERENT 1.2 THZ MIXER CHIP DESIGNS
6.2.1 IN-CHANNEL AND OUT-CHANNEL DESIGNS OF THE CHIP
6.2.2 LO ANTENNA AND HAMMER FILTER
6.2.3 DC GROUND STRUCTURE
6.2.4 RF FILTER AND ANTENNA
6.3 MECHANICAL BLOCK: IF AND DC CIRCUITS
6.3.1 IF CIRCUIT
6.3.2 DC CIRCUIT
6.4 THEORETICAL COMPARISON IN ADS-HFSS SIMULATIONS
6.4.1 CONVERSION LOSS AND NOISE TEMPERATURE OF THE RECEIVER
6.4.2 NOISE IN SCHOTTKY MIXERS
6.4.3 NOISE TEMPERATURE IN ADS SIMULATIONS
6.4.4 SIMULATED CONVERSION LOSS IN THE 1.2 THZ MIXER CHIPS
6.4.5 SIMULATED NOISE TEMPERATURE IN THE 1.2 THZ MIXER CHIPS
6.4.6 ANALYSIS OF THE BIAS PERFORMANCES AND THE RLC EQUIVALENT CIRCUIT
6.4.7 CONCLUSIONS
6.5 EXPERIMENTAL DEVICE
6.5.1 I-V CHARACTERISTICS OF THE DIODES
6.5.2 THE Y-FACTOR FOR EXPERIMENTAL MEASUREMENT
6.5.3 RF RESULTS OF THE 1.2 THZ RECEIVER AT 300 K
6.5.4 RF RESULTS OF THE 1.2 THZ RECEIVER AT 160 K
6.6 COMPARISON WITH ADS-HFSS INDIVIDUAL SIMULATIONS
6.7 SIMULTANEOUS SIMULATION OF THE 600 GHZ DOUBLER AND THE 1.2 THZ MIXER
6.7.1 SIMULTANEOUS SIMULATIONS WITH THE 600 GHZ TWO ANODES DOUBLER
6.7.2 SIMULTANEOUS SIMULATIONS WITH THE 600 GHZ FOUR ANODES DOUBLER
6.7.3 SIMULTANEOUS SIMULATIONS OF THE 1.2 THZ MIXER WITH HIGHLY DOPED PSBDS
6.8 UPDATED EXPERIMENTAL STATUS OF THE 1.2 THZ RECEIVER
6.8.1 LOCAL OSCILLATOR CHAIN
6.8.2 I-V CHARACTERISTICS OF THE NEW SET OF PSBDS 1.2 THZ CHIPS
6.8.3 UPDATED RESULTS OF THE 1.2 THZ RECEIVER AT 150 K
6.9 CONCLUSIONS
7 CONCLUSIONS AND PERSPECTIVES




